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Abstract—Lane detection is an important yet challenging

task in autonomous driving, which is affected by many

factors, e.g., light conditions, occlusions caused by other

vehicles, irrelevant markings on the road and the inherent

long and thin property of lanes. Conventional methods

typically treat lane detection as a semantic segmentation

task, which assigns a class label to each pixel of the image.

This formulation heavily depends on the assumption that

the number of lanes is pre-defined and fixed and no lane

changing occurs, which does not always hold. To make the

lane detection model applicable to an arbitrary number of

lanes and lane changing scenarios, we adopt an instance

segmentation approach, which first differentiates lanes and

background and then classify each lane pixel into each

lane instance. Besides, a multi-task learning paradigm is

utilized to better exploit the structural information and the

feature pyramid architecture is used to detect extremely

thin lanes. Three popular lane detection benchmarks, i.e.,

TuSimple, CULane and BDD100K, are used to validate the

effectiveness of our proposed algorithm.

I. INTRODUCTION

Lane detection [1] plays a pivotal role in autonomous

driving because lanes could serve as significant cues

for constraining the maneuver of vehicles on roads.

However, lane detection is challenging since it is affected

by many factors, e.g., light conditions, occlusions caused

by other vehicles, the existence of irrelevant markings on

the road and the inherent long and thin property of lanes.

Conventional methods [2], [4] usually utilize hand-

crafted features to extract lane segments and can perform

quite well in the highway driving scenarios. However,

these approaches need a good selection of features and

have poor generalization ability. Therefore, they cannot

be applied to scenarios with varying light conditions

and road types. The emergence of deep learning has

brought new insights into the task and Convolutional

Neural Network (CNN) based methods begin to gain

popularity [10], [13], [5], [3], [7], [8], [6]. The inherent

and automatic feature extracting ability of CNN eases the

complex feature selection process and partially solves

the generalization problems. However, the CNN-based

methods perform sub-optimally in urban roads where the

lane markings are ambiguous or the lanes are severely

occluded. Several schemes have been proposed to handle

lane detection in urban roads, e.g., performing message

passing to better exploit structural information [13] or

utilizing vanishing points to guide the lane detection

task [10]. These methods can work to some extent but

cannot fully solve the problem as they ignore the inherent

relationship between the different entities in the driving

scenarios. For instance, the areas within two neighbour-

ing lanes (i.e., drivable areas and alternative areas [16])

can serve as a strong indicator for the existence, shape

and position of lanes. Besides, these models tend to fail

when encountering an arbitrary number of lanes or lane
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changing since they model lane detection as the semantic

segmentation task and each lane is assigned a pre-defined

class. Failing to achieve real-time performance is also a

drawback of these approaches [13], [10].

Therefore, in this study, we propose to use a multi-

task learning paradigm to better utilize the structural and

contextual information of the driving scenarios. More

specifically, besides the traditional lane detection branch,

we also borrow the rich structural information from the

drivable area detection task and the lane point regression

task. The feature pyramid architecture [11] is also incor-

porated in our model to handle challenges of detecting

extremely thin lanes. To fulfill the real-time requirement,

we adopt the light-weight and efficient network, i.e.,

ENet [14], as our backbone. To detect conditions with

unfixed number of lanes, we follow [12] and divide

the lane detection task into two sub-tasks. The first one

is to generate the binary segmentation map which only

differentiates the lanes and the background. The second

sub-task is to classify the lane pixels into different lane

instances (i.e., treat each lane as an instance). Three

popular benchmarks, i.e., TuSimple [15], CULane [13]

and BDD100K [16], are selected to validate the effective-

ness of our proposed algorithm. Since it is an on-going

project, we only report preliminary experimental results

on TuSimple and CULane.

II. RELATED WORK

Lane detection is conventionally handled via using

specialized and hand-crafted features to obtain lane

segments. These segments are further grouped to get

the final results [2], [4]. These methods are intuitive

but have many shortcomings, e.g., requiring complex

feature selection process, being lack of robustness and

only applicable to relatively easy driving scenarios.

Recently, deep learning methods [10], [13], [5],

[3] have been proposed to ease the selection of hand-

crafted features as well as greatly improve the models’

generalization ability. These approaches usually adopt

the dense prediction formulation, i.e., treat lane detection

as a semantic segmentation task, where each pixel in

an image is assigned with a label to indicate whether

it belongs to a lane or not. For example, Pan et al

[13] propose SCNN, which combines spatial cues with

CNN, to generate multi-channel probability maps where

the number of channels equals to the number of lanes.

However, these methods can only handle scenarios where

the number of lanes is pre-defined and fixed, and they

often fail when the vehicle is changing lanes. Another

drawback is that these approaches could not achieve real-

time performance, which impedes them from being used

in the real world.

To overcome these shortcomings, we follow [12] and

model lane detection as an instance segmentation task.

More specifically, the lane detection task is divided into

two sub-tasks. The first sub-task is generating a binary

segmentation map which differentiates lanes and the

background. The second sub-task is classifying each lane

pixel into a lane instance. The light-weight network, i.e.,

ENet [14] is used as our backbone to achieve real-time

performance. What’s more, to utilize the structural and

contextual information, we adopt a multi-task learning

paradigm in which drivable area detection and lane point

regression are incorporated into the original lane detec-

tion model. Moreover, the feature pyramid architecture

is utilized to detect extremely thin lanes.

III. METHODOLOGY

In this section, we will give a detailed explanation

of our framework as shown in Fig. 1. Our model is

mainly composed of five components, i.e., the binary

segmentation branch (B), the drivable area detection
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Fig. 1: An overview of our agnostic lane detection model.

branch (D), the lane point regression branch (P), the lane

pixel embedding branch (E) and the clustering branch

(C). The encoder and decoder of the first four branches

are the same but only the encoder is shared.

A. Binary Segmentation

The objective of the binary segmentation branch is to

generate a binary segmentation map, indicating whether

each pixel in the original image belongs to the lanes or

not. Since the ground-truth lane labels of three datasets

are all lane points, we generate the final targets by

connecting lane points into lines (see the final targets

in Fig. 2). We use standard cross-entropy loss to train

this branch. Besides, to solve the class imbalance of lane

pixels and background pixels, the loss of background

is multiplied by 0.4. Moreover, the feature pyramid

architecture [11] is adopted to detect extremely thin

lanes.

B. Drivable Area Detection

The target of the drivable area detection branch is to

output a segmentation map, indicating which part of the

road is drivable (we merge the original alternative areas

into the drivable areas to provide denser targets). Stan-

dard cross-entropy loss is adopted to train this branch.

This branch aims at using the boundary of drivable areas

to refine the binary segmentation result via providing

more structural information.

C. Lane Point Regression

The objective of this branch is to regress the position

of each lane points. Since the lane points are relatively

sparse, we use an 11 x 11 kernel to smooth the original

lane point maps to get the final targets of this branch.

L2 loss is used to train this branch. This branch aims at

refining the output of the binary segmentation branch.

D. Lane Pixel Embedding

The input of this branch is the lane pixels extracted

from the binary segmentation maps. We treat each lane
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in the image as an instance. The target of this branch is

to classify the lane pixels into different lane instances.

The core idea is that pixels belonging to the same

lane instance should be close to each other while those

belonging to different lane instances should be far from

each other. We utilize the following equation to compute

the clustering loss [12]:

Lvar =
1

L

L∑
c=1

1

Nc

Nc∑
i=1

[‖µc − xi‖22 − δv]2+, (1)

Ldist =
1

L(L− 1)

L∑
cA=1

L∑
cB=1,cA 6=cB

[δd−‖µcA−µcB‖22]2+,

(2)

where L denotes the number of lanes, xi is the

embedding of a pixel, Nc is the number of elements in

cluster c, µc is the mean embedding of cluster c and

[x]+ = max(0, x). The first loss term Lvar is used

to keep the distance between pixels belonging to the

same lane instance closer than 2δv . The second loss term

Ldist is used to keep the distance between different lane

clusters farther than δd.

E. Clustering

The clustering branch is used to process the output

of the lane pixel embedding branch. In the experiments,

we set δd > 6δv . Therefore, given the output of the lane

pixel embedding branch, we can randomly select a pixel

as the starting point, and then label all pixels whose

distance from the selected pixel is smaller than 2δv as

the same instance. This process is continued until all the

lane pixels are assigned to a specific lane instance. Note

that this branch does not have any learnable parameters.

F. Training strategy

Currently, we adopt a two-stage training strategy. In

the first stage, we fix the parameters of branch E and

TuSimple CULane BDD100K

lanes road markings

Fig. 2: Typical video frames of TuSimple, CULane and

BDD100K datasets.

train the branch P, B and D. In the second stage, we fix

the parameters of branch P, B and D and train branch E.

IV. EXPERIMENTS

In this section, we will first give a brief introduction

to three datasets used for evaluation. Then, preliminary

experimental results are given.

A. Dataset

Table I records the basic information of three lane

detection datasets. Note that the last column of Table I

shows that TuSimple and CULane have no more than

5 lanes in a video frame while BDD100K typically has

more than 8 lanes in a video frame. Besides, TuSimple is

relatively easy while CULane and BDD100K are more

challenging considering the total number of video frames

and road types.

B. Evaluation Criterion

1) TuSimple: In TuSimple dataset, we use the official

metric (accuracy) as the evaluation criterion. Besides,

false positive (FP ) and false negative (FN ) are also

listed. The following is the equation to compute accu-

racy [15]:

Accuracy =
Npred

Ngt
, (3)
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TABLE I: A brief description about three lane detection datasets.

Name # Frame Train Validation Test Resolution Road Type # Lane ≤ 5 ?

TuSimple 6, 408 3, 626 – 2, 782 1280 × 720 highway
√

CULane 133, 235 88, 880 9, 675 34, 680 1640 × 590 urban, rural and highway
√

BDD100K 80, 000 70, 000 – 10, 000 1280 × 720 urban, rural and highway ×

where Npred is the number of correctly predicted lane

points and Ngt is the number of ground-truth lane points.

2) CULane and BDD100K: To judge whether a lane

is correctly detected, we treat each lane as a line with

fixed pixel width (30 for CULane and 8 for BDD100K)

and compute the intersection-over-union (IoU) between

labels and predictions. Predictions whose IoUs are larger

than 0.5 are considered as true positives (TP). Then, we

use F1 −measure as the evaluation metric formulated

as follows:

F1 −measure =
2× Precision×Recall
Precision+Recall

, (4)

where Precision = TP
TP+FP and Recall = TP

TP+FN .

C. Lane detection model

We choose ENet [14] as the backbone model (i.e.,

the encoder and decoder module in Fig. 1). Adam [9]

is selected as the optimizer to train our model with an

initial learning rate of 5× 10−4.

D. Preliminary results on TuSimple and CULane

Table II records the performance of some baselines

and our algorithm in the testing set of TuSimple. Since

TuSimple is relatively easy and our ENet model has

much fewer parameters compared with SCNN (see Table

IV), the performance of our model is satisfying. Table

III records the performance of some baselines and our

algorithms in the testing set of CULane. As can be seen

in Table IV, in terms of the running time efficiency

TABLE II: Performance of different algorithms on

TuSimple testing set.

Algorithm Accuracy FP FN

SCNN [13] 0.9653 0.0617 0.0180

LaneNet [12] 0.9638 0.0780 0.0244

EL-GAN [5] 0.9639 0.0412 0.0336

ENet (ours) 0.9629 0.0722 0.0218

TABLE IV: The running time and parameters of

different algorithms on CULane testing set.

Indicator ENet ResNet-18 ResNet-101 SCNN

Running time (ms) 13.4 25.3 171.2 133.5

Parameter (M) 0.98 12.41 52.53 20.72

and the number of parameters, our algorithm obviously

outperforms other baselines.

V. CONCLUSION

In this study, we first point out the value and main

challenges of the lane detection task. Then, the strengths

and weaknesses of both conventional and deep learn-

ing based methods are presented. To overcome the

shortcomings of previous methods, our agnostic lane

detection model is proposed, which utilizes a multi-task

learning paradigm and the feature pyramid architecture

to exploit structural and contextual information. We use

three popular benchmarks, i.e., TuSimple, CULane and

BDD100K, to validate the effectiveness of the proposed

algorithm. Preliminary experimental results have shown

that our model outperforms previous approaches in terms
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TABLE III: Performance (F1-measure) of different algorithms on CULane testing set. † indicates the results are

copied from [13]. For crossroad, only FP is shown.

Category ENet ResNet-18 VGG-16† ReNet† DenseCRF† MRFNet† ResNet-50† ResNet-101† SCNN†

Normal 88.4 89.8 83.1 83.3 81.3 86.3 87.4 90.2 90.6

Crowded 67.0 68.1 61.0 60.5 58.8 65.2 64.1 68.2 69.7

Night 61.4 64.2 56.9 56.3 54.2 61.3 60.6 65.9 66.1

No line 42.9 42.5 34.0 34.5 31.9 37.2 38.1 41.7 43.4

Shadow 63.4 67.5 54.7 55.0 56.3 59.3 60.7 64.6 66.9

Arrow 81.9 83.9 74.0 74.1 71.2 76.9 79.0 84.0 84.1

Dazzle light 57.4 59.8 49.9 48.2 46.2 53.7 54.1 59.8 58.5

Curve 62.6 65.5 61.0 59.9 57.8 62.3 59.8 65.5 64.4

Crossroad 2768 1995 2060 2296 2253 1837 2505 2183 1990

Total 68.8 70.5 63.2 62.9 61.0 67.0 66.7 70.8 71.6

of the running time efficiency and the number of pa-

rameters. However, this is still an on-going project and

more performance gains will be achieved via a good

deployment of different components and a more rational

training strategy.
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