
Learning Lightweight Lane Detection CNNs by Self Attention Distillation

Yuenan Hou1, Zheng Ma2, Chunxiao Liu2, and Chen Change Loy3†

1The Chinese University of Hong Kong 2SenseTime Group Limited 3Nanyang Technological University
hy117@ie.cuhk.edu.hk, {mazheng, liuchunxiao}@sensetime.com, ccloy@ntu.edu.sg

Abstract

Training deep models for lane detection is challenging
due to the very subtle and sparse supervisory signals in-
herent in lane annotations. Without learning from much
richer context, these models often fail in challenging sce-
narios, e.g., severe occlusion, ambiguous lanes, and poor
lighting conditions. In this paper, we present a novel knowl-
edge distillation approach, i.e., Self Attention Distillation
(SAD), which allows a model to learn from itself and gains
substantial improvement without any additional supervision
or labels. Specifically, we observe that attention maps ex-
tracted from a model trained to a reasonable level would
encode rich contextual information. The valuable contex-
tual information can be used as a form of ‘free’ supervision
for further representation learning through performing top-
down and layer-wise attention distillation within the net-
work itself. SAD can be easily incorporated in any feed-
forward convolutional neural networks (CNN) and does not
increase the inference time. We validate SAD on three pop-
ular lane detection benchmarks (TuSimple, CULane and
BDD100K) using lightweight models such as ENet, ResNet-
18 and ResNet-34. The lightest model, ENet-SAD, per-
forms comparatively or even surpasses existing algorithms.
Notably, ENet-SAD has 20 × fewer parameters and runs
10 × faster compared to the state-of-the-art SCNN [19],
while still achieving compelling performance in all bench-
marks. Our code is available at https://github.
com/cardwing/Codes-for-Lane-Detection.

1. Introduction

Lane detection [1] plays a pivotal role in autonomous
driving as lanes could serve as significant cues for con-
straining the maneuver of vehicles on roads. Detecting
lanes in-the-wild is challenging due to poor lighting con-
ditions, occlusions caused by other vehicles, irrelevant road
markings, and the inherent long and thin property of lanes.

Contemporary algorithms [5, 8, 16, 19] typically adopt

†: Corresponding author.

a dense prediction formulation, i.e., treat lane detection as a
semantic segmentation task, where each pixel in an image is
assigned with a binary label to indicate whether it belongs
to a lane or not. These methods heavily rely on the seg-
mentation maps of lanes as the supervisory signals. Since
lanes are long and thin, the number of annotated lane pix-
els is far fewer than the background pixels. Learning from
such subtle and sparse annotations becomes a major chal-
lenge in training deep models for the task. A plausible way
is to increase the width of lane annotations. However, it
may degrade the detection performance.

Several schemes have been proposed to relieve the re-
liance of deep models on the sparse annotations, e.g., multi-
task learning (MTL) and message passing (MP). For exam-
ple, Lee et al. [16] exploit vanishing points to guide the
training of deep models and Pan et al. [19] incorporate spa-
tial MP in their lane detection models. MTL can indeed pro-
vide additional supervisory signals but it requires additional
efforts, usually with human intervention, to prepare the an-
notations, e.g., scene segmentation maps, vanishing points,
or drivable areas. MP can help propagate the information
between neurons to counter the effect of sparse supervision
and better capture the scene context. However, it increases
the inference time significantly due to the overhead of MP.
For instance, applying MP in a layer of SCNN [19] con-
tributes 35% of its total feed-forward time.

In this work, we present a simple yet novel approach
that allows a lane detection network to reinforce represen-
tation learning of itself without the need of additional la-
bels and external supervisions. In addition, it does not in-
crease the inference time of the base model. Our approach
is named Self-Attention Distillation (SAD). As the name
implies, SAD allows a network to exploit attention maps
derived from its own layers as the distillation targets for
its lower layers. Such an attention distillation mechanism
is used to complement the usual segmentation-based super-
vised learning.

SAD is motivated by an interesting observation – when
a lane detection network is trained to a reasonable level, at-
tention maps derived from different layers would capture
diverse and rich contextual information that hints the lane

1

https://github.com/cardwing/Codes-for-Lane-Detection
https://github.com/cardwing/Codes-for-Lane-Detection

block 1 block 2 block 3 block 4 output

input
40 K

50 K

60 K

episode

label

(a) Before SAD

input
50 K

60 K

label

(b) After SAD (start at 40 K episodes)

0 10.5
probability

Figure 1. Attention maps of the ENet [20] before and after applying self attention distillation. Here, we extract the attention maps from the
four stages/blocks following the design of ENet model. Note that self attention distillation is added in the 40 K episodes.

locations and a rough outline of the scene, as shown in
Fig. 1 (before SAD at 40K episodes). By adding SAD to
the learning of this half-trained model, i.e., having the pre-
ceding block to mimic the attention maps of a deeper block,
e.g., block 3 mimic−−−→ block 4 and block 2 mimic−−−→ block 3,
the network can learn to strengthen its representations, as
shown in Fig. 1 (after SAD): (1) the attention maps of lower
layers are refined, with richer scene contexts captured by the
visual attention, and (2) the better representation learned at
lower layers in turn benefits the deeper layers. For instance,
although block 4 does not learn from any distillation targets,
its representation is reinforced, as evident from the much
distinct attention at the lane locations. By contrast, without
using SAD, the visual attentions of different layers of the
same network hardly improve despite continual training up
to 60K episodes.

SAD opens a new possibility of training accurate lane
detection networks apart from deploying existing tech-
niques such as multi-task learning and message passing,
which can be expensive. It allows us to train small networks
with excellent visual attention that is on par with very deep
networks. In our experiments, we successfully demonstrate
the effectiveness of SAD on a few popular lightweight mod-
els, e.g., ENet [20], ResNet-18 [10] and ResNet-34 [10].

In summary, our contributions are three-fold: (1) We
propose a novel attention distillation approach, i.e., SAD,
to enhance the representation learning of CNN-based lane
detection models. SAD is only used in the training phase
and brings no computational cost during the deployment.
Our work is the first attempt of using a network’s own at-
tention maps as the distillation targets. (2) We carefully
and systematically investigate the inner mechanism of SAD,
the consideration of choosing among different layer-wise
mimicking paths, and the timepoint of introducing SAD to

the training process for improved gains. (3) We verify the
usefulness of SAD on boosting the performance of small
lane detection networks. We further present several archi-
tectural reformulations to ENet [20] for improved perfor-
mance. Our lightweight model, ENet-SAD, achieves state-
of-the-art lane detection performance on TuSimple [21],
CULane [19] and BDD100K [26]. It can serve as a strong
backbone to facilitate future research on lane detection.

2. Related Work
Lane detection. Lane detection is conventionally handled
via using specialized and hand-crafted features to obtain
lane segments. These segments are further grouped to get
the final results [2, 6]. These methods have many short-
comings, e.g., requiring complex feature selection process,
being lack of robustness and only applicable to relatively
easy driving scenarios.

Recently, deep learning has been employed to omit hand-
crafted features altogether and learn to extract features in an
end-to-end manner [16, 19, 8, 5]. These approaches usu-
ally adopt the dense prediction formulation, i.e., treat lane
detection as a semantic segmentation task, where each pixel
in an image is assigned with a label to indicate whether it
belongs to a lane or not. For example, He et al. [9] pro-
pose Dual-View CNN (DVCNN) to handle lane detection.
The method takes front-view and top-view images as inputs.
Another popular paradigm performs lane detection from the
perspective of instance segmentation. For instance, Neven
et al. [18] divide lane detection into two stages. Specifi-
cally, they first perform binary segmentation that differen-
tiates lane pixels and background pixels. These lane pixels
are then classified into different lane instances.

Several schemes have been proposed to complement the
lane-based supervision and to capture richer scene context,

e.g., multi-task learning and message passing. For example,
Zhang et al. [28] establish a framework that accomplishes
lane boundary segmentation and road area segmentation si-
multaneously. Geometric constraints that lane boundaries
and lane areas constitute the road are also included to fur-
ther enhance the final performance. Mohsen et al. [8] take
lane labels as extra inputs and integrate generative adversar-
ial network (GAN) into the original framework so that the
segmentation maps resemble labels more. Pan et al. [19]
perform sequential massage passing between the outputs
of top-level layers to better exploit the structural informa-
tion. While the aforementioned methods do bring additional
gains to the performance, multi-task learning requires ex-
tra annotations and message passing is not efficient since
it propagates information in a sequential way. On the con-
trary, the proposed SAD is free from the requirement of ex-
tra annotations and it does not increase the inference time.
Knowledge and attention distillation. Knowledge distilla-
tion was originally proposed by [11] to transfer the knowl-
edge from large networks to small networks. Commonly
in knowledge distillation, a small student network mimics
the intermediate outputs of large teacher networks as well
as the labels. In [7, 24] the student and teacher networks
share the same capacity and mimicking is performed be-
tween pairs of layers with same dimensionality. Hou et
al. [14] also investigate knowledge distillation performed
between heterogeneous networks. Recent studies [27, 22]
have expanded knowledge distillation to attention distilla-
tion. For instance, Sergey et al. [27] introduce two types of
attention distillation, i.e., activation-based attention distilla-
tion and gradient-based attention distillation. In both kinds
of distillation, a student network is trained through learn-
ing attention maps derived from a teacher network. The
proposed SAD differs to [27] in that our method does not
need a teacher network. Distillation is conducted in a layer-
wise and top-down manner, in which attention knowledge is
propagated layer by layer. This is new in the literature. It is
noteworthy that our focus is to investigate the possibility of
distilling layer-wise attention for self-learning. This differs
from existing studies on using visual attention for weighting
features [4, 15, 27].

3. Methodology
Lane detection is commonly formulated as a semantic

segmentation task. More specifically, given an input image
X, the objective is to assign a label lij (lij = 1, ..., Nc) to
each pixel (i, j) of X, comprising the segmentation map s.
Here,Nc is the number of classes. The objective is to learn a
mapping F : X 7→ s. Recent studies use CNN as F for end-
to-end prediction. The task of lane existence prediction is
also introduced to facilitate the evaluation process. We use
b to represent the binary labels that indicate the existence of
lanes. Then, the function becomes F : X 7→ (s, b).

3.1. Self Attention Distillation

Apart from training our lane detection network with
the aforementioned semantic segmentation and lane exis-
tence prediction losses, we aim to perform layer-wise and
top-down attention distillation to enhance the representa-
tion learning process. The proposed SAD does not require
any external supervision or additional labels since attention
maps are derived from the network itself.

In general, attention maps can be divided into two
categories, i.e., activation-based attention maps [27] and
gradient-based attention maps [27]. The activation-based
attention maps are obtained via processing the activation
output of a specific layer while the gradient-based ones are
obtained via using the layer’s gradient output. In the exper-
iment, we empirically find that activation-based attention
distillation yields considerable performance gains while
gradient-based attention distillation barely works. Hence, in
the following sections we only discuss the activation-based
attention distillation.
Activation-based attention distillation. We use Am ∈
RCm×Hm×Wm to denote the activation output of the m-th
layer of the network, where Cm, Hm and Wm denote the
channel, height and width, respectively. Let M denote the
number of layers in the network. The generation of the at-
tention map is equivalent to finding a mapping function G:
RCm×Hm×Wm → RHm×Wm . The absolute value of each
element in this map represents the importance of this el-
ement on the final output. Therefore, this mapping func-
tion can be constructed via computing statistics of these
values across the channel dimension. More specifically,
the following three operations [27] can serve as the map-
ping function: Gsum(Am) =

∑Cm

i=1 |Ami|, Gpsum(Am) =∑Cm

i=1 |Ami|p and Gpmax(Am) = maxi=1,Cm
|Ami|p. Here,

p > 1 and Ami denotes the i-th slice of Am in the channel
dimension.

The differences between these mapping functions are de-
picted in Fig. 2. Compared with Gsum(Am), Gpsum(Am)
puts more weights to areas with higher activations. The
larger the p is, the more focus is placed on these highly acti-
vated areas. Compared with Gpmax(Am), Gpsum(Am) is less
biased since it calculates weights across multiple neurons
instead of selecting the maximum value of these neuron ac-
tivations as the weight. In the experiment, we empirically
find that using G2sum(.) as the mapping function yields the
most performance gains.

𝒢𝑠𝑢𝑚(𝐴𝑚) 𝒢𝑠𝑢𝑚
2 (𝐴𝑚) 𝒢𝑚𝑎𝑥

2 (𝐴𝑚)input

Figure 2. Attention maps of the block 4 of the ENet model using
different mapping functions.

AT-GEN

mimic

1
1
1
0

detected lanes

E1 E2

D1 D2

E3 E4E1 E2 E3 E4

D1 D2

P1

AT-GEN AT-GENAT-GEN

Figure 3. An instantiation of using SAD. E1 ∼E4 comprise the encoder of ENet [20], D1 and D2 comprise the decoder of ENet. Following
[19], we add a small network to predict the existence of lanes, denoted as P1. AT-GEN is the attention generator.

Adding SAD to training. The intuition behind SAD is that
the attention maps of previous layers can distil useful con-
textual information from those of successive layers. Follow-
ing [27], we also perform spatial softmax operation Φ(.)
on G2sum(Am). Bilinear upsampling B(.) is added before
the softmax operation if the size of original attention maps
is different from that of targets. However, different from
Sergey et al. [27] who perform attention distillation within
two networks, the proposed self attention distillation is per-
formed within the network itself.

Adding SAD to an existing network is straight-forward.
It is possible to introduce SAD at different timepoint of the
training, which could affect the convergence time. We will
show an evaluation in the experiment section. Here we as-
sume an ENet half-trained to 40K episodes. As shown in
Fig. 3, we add an attention generator, abbreviated as AT-
GEN, after each E2, E3, and E4 encoder block of ENet.
Formally, AT-GEN is represented by a function Ψ(.) =
Φ(B(G2sum(.))). A successive layer-wise distillation loss is
formulated as follows:

Ldistill(Am, Am+1) =

M−1∑
m=1

Ld(Ψ(Am),Ψ(Am+1)), (1)

where Ld is typically defined as a L2 loss and Ψ(Am+1)
is the target of the distillation loss. In the example shown
in Fig. 3, we have the number of layers M = 4. Note
that we do not assign different weights to different SAD
paths, although this is possible. We found that this uniform
scheme works well in our experiments.

The total loss is comprised of four terms:

L =Lseg(s, ŝ) + αLIoU(s, ŝ)︸ ︷︷ ︸
segmentation loss

+ βLexist(b, b̂)︸ ︷︷ ︸
existence loss

+ γLdistill(Am, Am+1)︸ ︷︷ ︸
distillation loss

.
(2)

Here, the first two terms are segmentation losses that com-
prise of the standard cross entropy loss Lseg and the IoU

loss LIoU. The IoU loss aims at increasing the intersection-
over-union between the predicted lane pixels and ground-
truth lane pixels. It is formulated as LIoU = 1 −

Np

Np+Ng−No
, where Np is the number of predicted lane pix-

els, Ng is the number of ground-truth lane pixels and No is
the number of lane pixels in the overlapped areas between
predicted lane areas and ground-truth lane areas. Lexist is
the binary cross entropy loss. ŝ is the segmentation map
produced by the network and b̂ is the prediction of the ex-
istence of lanes. The parameters α, β, and γ balance the
influence of segmentation losses, existence loss, and distil-
lation loss on the final task.

It is noteworthy that the SAD paths can be generalized
to dense connections beyond the example shown here. For
instance, we can add block 1 mimic−−−→ block 3, block 1 mimic−−−→
block 4, and block 2 mimic−−−→ block 4 in addition to the current
paths. In general, the number of possible SAD paths for a
network with a depth of M layers is M(M−1)

2 . We will
evaluate this possibility in our experiments.
Visualization of attention maps with and without SAD.
We investigate the influence of SAD by studying the at-
tention maps of different blocks in ENet with and with-
out SAD. More results will be reported in Section 4. Both
networks with and without SAD are trained up to 60K
episodes. We visualize the attention maps of four exist-
ing blocks in ENet. As can be observed in Fig. 4, after
adding SAD, the attention maps of ENet become more con-
centrated on task-relevant objects, e.g., lanes, vehicles and
road curbs. This would in turn improve the lane detection
accuracy, as we will show in the experiments.

3.2. Lane Prediction

The output of the model is not post-processed for TuSim-
ple and BDD100K except CULane. For CULane, in the
inference stage, we feed the image into the ENet model.
Then the multi-channel probability maps and the lane ex-
istence vector are obtained. Following [19], the final out-
put is obtained as follows: First, we use a 9 × 9 kernel to
smooth the probability maps. Then, for each lane whose

input

with SAD

without SAD

0 10.5
probabilityblock 3 block 4block 2block 1

with SAD

without SAD

with SAD

without SAD

Figure 4. Attention maps of ENet with and without self attention distillation. Both networks with and without SAD are trained up to 60K
episodes. SAD is applied to ENet at 40K training episodes.

existence probability is larger than 0.5, we search the cor-
responding probability map every 20 rows for the position
with the highest probability value. In the end, we use cubic
splines to connect these positions to get the final output.

3.3. Architecture Design

The original ENet model is an encoder-decoder structure
comprised of E1 ∼ E4, D1 and D2. Following [19], we
add a small network P1 to predict the existence of lanes.
The encoder module is shared to save memory space. Apart
from this modification, we also observed some useful tech-
niques to modify ENet for achieving better performance in
the lane detection task. Dilated convolution [25] is added to
replace the original convolution layers in the lane existence
prediction branch to increase the receptive field of the net-
work without increasing the number of parameters. In the
original design, the resolution of feature maps of E4 is only
36× 100 for CULane. This leads to severe loss of informa-
tion. Hence, we use feature concatenation to fuse the output
of E4 with that of E3 so that the output of the encoder can
benefit from information encoded in previous layers.

4. Experiments

Datasets. Figure 5 shows several video frames of three
datasets that we use in our experiments. They are TuSim-
ple [21], CULane [19] and BDD100K [26]. TuSimple
and CULane are widely used in the literature. Many al-
gorithms [19, 18, 8] have been tested in TuSimple since
it was the largest lane detection dataset before 2018. As
to CULane, it contains many challenging driving scenar-
ios like crowded road conditions or roads under poor light-
ing (see Fig. 5). BDD100K is originally designed for lane

TuSimple CULane BDD100K

lanes

Figure 5. Typical video frames of TuSimple, CULane and
BDD100K datasets. Ground-truth lanes are marked in green color.

instance classification. However, since there are typically
multiple lanes in an image and these lanes are usually very
close to each other, using instance segmentation algorithms
will yield inferior performance. Therefore, we choose to
only detect lanes without differentiating lane instances for
BDD100K. We discuss the details of transforming the orig-
inal ground truths for our task in the following section on
implementation details. Table 1 summarizes their details.
Note that the last column of Table 1 shows that TuSimple
and CULane have no more than 5 lanes in a video frame
while BDD100K typically contains more than 8 lanes in
a video frame. Besides, TuSimple is relatively easy while
CULane and BDD100K are more challenging considering
the total number of video frames and road types. Note that
the original BDD100K dataset provides 100K video frames,
in which 70K are used for training, 10K for validation and
20K for testing. However, since the ground-truth labels of
the testing partition are not publicly available, we keep the
training set unchanged but use the original validation set for
testing. A new validation set is allocated separately from
the training set, as shown in Table 1.

Table 1. Basic information of three lane detection datasets.
Name # Frame Train Validation Test Resolution Road Type # Lane > 5 ?

TuSimple [21] 6, 408 3, 268 358 2, 782 1280 × 720 highway ×
CULane [19] 133, 235 88, 880 9, 675 34, 680 1640 × 590 urban, rural and highway ×

BDD100K [26] 80, 000 60, 000 10, 000 10, 000 1280 × 720 urban, rural and highway
√

Evaluation metrics. To facilitate comparisons against pre-
vious studies, we follow the literature and use the corre-
sponding evaluation metrics for each particular dataset.
1) TuSimple. We use the official metric (accuracy) as the
evaluation criterion. Besides, false positive (FP) and false
negative (FN) are also reported. Accuracy is computed
as [21]: Accuracy =

Npred

Ngt
, where Npred is the number

of correctly predicted lane points and Ngt is the number of
ground-truth lane points.
2) CULane. Following [19], to judge whether a lane is cor-
rectly detected, we treat each lane as a line with 30 pixel
width and compute the intersection-over-union (IoU) be-
tween labels and predictions. Predictions whose IoUs are
larger than 0.5 are considered as true positives (TP). Then,
we use F1 measure as the evaluation metric, which is de-
fined as: F1 = 2×Precision×Recall

Precision+Recall , where Precision =
TP

TP+FP and Recall = TP
TP+FN .

3) BDD100K. Since there are typically more than 8 lanes in
an image, we decide to use pixel accuracy and IoU of lanes
to evaluate the performance of different models.
Implementation details. Following [19], we resize the im-
ages of TuSimple and CULane to 368×640 and 288×800,
respectively. As to BDD100K, we resize the image to
360×640 to save memory usage. The lanes of BDD100K
are labelled by two lines. Training the networks using the
provided labels is tricky. Therefore, based on these two
lines, we calculate the center lines as new targets. We di-
late ground-truth lanes of the training set of BDD100K as
8 pixels to provide denser targets while keeping these of
testing set unchanged (2 pixels). We use SGD [3] to train
our models and the learning rate is set to 0.01. Batch size
is set as 12 and the total number of training episodes is set
as 1800 for TuSimple and 60K for CULane and BDD100K.
The cross entropy loss of background pixels is multiplied by
0.4. Loss coefficients α, β, and γ are set as 0.1. Since we
select lane pixel accuracy and IoU as the evaluation crite-
rion for BDD100K dataset, we alter the original segmenta-
tion branch to output binary segmentation maps to facilitate
the evaluation on BDD100K. The lane existence prediction
branch is also removed for the BDD100K evaluation.

We empirically found that several practical techniques,
i.e., data augmentation and IoU loss, can considerably en-
hance the performance of CNN-based lane detection mod-
els. As to data augmentation, we use random rotation,
random cropping and horizontal flipping to process the in-
put images. In our experiments, we apply the same seg-
mentation losses and augmentation strategy to our method,

Table 2. Performance of different algorithms on TuSimple testing
set. Here ”R-18-SAD ” denotes ResNet-18 + SAD and we use the
same abbreviation in the following sections.

Algorithm Accuracy FP FN

ResNet-18 [10] 92.69% 0.0948 0.0822
ResNet-34 [10] 92.84% 0.0918 0.0796

ENet [20] 93.02% 0.0886 0.0734
LaneNet [18] 96.38% 0.0780 0.0244
EL-GAN [8] 96.39% 0.0412 0.0336
SCNN [19] 96.53% 0.0617 0.0180

R-18-SAD (ours) 96.02% 0.0786 0.0451
R-34-SAD (ours) 96.24% 0.0712 0.0344
ENet-SAD (ours) 96.64% 0.0602 0.0205
Table 4. Comparative results on BDD100K test set.

Algorithm Accuracy IoU

ResNet-18 [10] 30.66% 11.07
ResNet-34 [10] 30.92% 12.24

ResNet-101 [10] 34.45% 15.02
ENet [20] 34.12% 14.64

SCNN [19] 35.79% 15.84

R-18-SAD (ours) 31.10% 13.29
R-34-SAD (ours) 32.68% 14.56
R-101-SAD (ours) 35.56% 15.96
ENet-SAD (ours) 36.56% 16.02

SCNN, ResNet baselines, and deep supervision methods,
to ensure a fair comparison. Since the source codes of
LaneNet [18] and EL-GAN [8] are not available, we use
their results reported in their papers.

4.1. Results

Tables 2-4 summarize the performance of our meth-
ods, i.e., ResNet-18-SAD, ResNet-34-SAD, and ENet-
SAD against state-of-the-art algorithms on the testing set
of TuSimple, CULane and BDD100K datasets. We also re-
port the runtime and parameter count of different algorithm
in Table 3 so that we can compare the performance with the
complexity of the model taken into account. The runtime
is recorded using a single GPU (GeForce GTX TITAN X)
and the final value of runtime is obtained after averaging the
runtime of 100 samples.

It is observed that ENet-SAD outperforms all baselines
in BDD100K while achieving compelling performance in
TuSimple and CULane. Considering that ENet-SAD has 20
× fewer parameters and runs 10 × faster compared with
SCNN on CULane testing set, the performance strongly
suggests the effectiveness of SAD. It is observed that
ResNet-18-SAD and ResNet-34-SAD achieve slightly in-
ferior performance to ENet-SAD despite their larger model

Table 3. Performance (F1-measure) of different algorithms on CULane testing set. For crossroad, only FP is shown. The second column
denotes the proportion of each scenario in the testing set.

Category Proportion ENet-SAD R-18-SAD R-34-SAD R-101-SAD ResNet-101 [10] SCNN [19]

Normal 27.7% 90.1 89.8 89.9 90.7 90.2 90.6
Crowded 23.4% 68.8 68.1 68.5 70.0 68.2 69.7

Night 20.3% 66.0 64.2 64.6 66.3 65.9 66.1
No line 11.7% 41.6 42.5 42.2 43.5 41.7 43.4
Shadow 2.7% 65.9 67.5 67.7 67.0 64.6 66.9
Arrow 2.6% 84.0 83.9 83.8 84.4 84.0 84.1

Dazzle light 1.4% 60.2 59.8 59.9 59.9 59.8 58.5
Curve 1.2% 65.7 65.5 66.0 65.7 65.5 64.4

Crossroad 9.0% 1998 1995 1960 2052 2183 1990
Total – 70.8 70.5 70.7 71.8 70.8 71.6

Runtime (ms) – 13.4 25.3 50.5 171.2 171.2 133.5
Parameter (M) – 0.98 12.41 22.72 52.53 52.53 20.72

capacity. The is because ResNet-18 and ResNet-34 only
use spatial upsampling as the decoder while ENet has a
specially designed decoder for the task. It is noteworthy
that SAD also helps given a deeper model. Specifically,
we apply SAD to ResNet-101, and find that it increases the
F1-measure from 70.8 to 71.8 in CULane and the accuracy
increases from 34.45% to 35.56% in BDD100K.

We show some qualitative results of our algorithm and
some baselines in these three benchmarks. As can be seen
in Fig. 6, ENet-SAD can detect lanes more precisely than
ENet [20] in TuSimple and CUlane. As can be seen in Fig.
7, the output probability maps of ENet-SAD are more com-
pact and contain less noise compared with those of vanilla
ENet and SCNN in poor lighting conditions. However,
since many images in BDD100K contain more than 8 lanes
and are collected in challenging scenarios like severe occlu-
sion and poor lighting conditions, the performance of all al-
gorithms is unsatisfactory and needs further improvement.
In general, SAD can improve the visual attention as well
as the detection performance in challenging conditions like
crowded roads and poor light conditions.

We also perform experiments that apply SAD and re-
move the effect of the P1 branch by blocking the gradient
of the P1 branch from the main branch. Results show that
ENet-SAD (without supervision from P1 branch) can still
achieve 96.61% on TuSimple, 70.8 on CULane and 36.54%
on BDD100K, which means the performance gains come
mainly from SAD itself.

4.2. Ablation Study

We investigate the effects of different factors, e.g., the
mimicking path, on the final performance. Besides, we also
perform extensive experiments to investigate the timepoint
to introduce SAD in the training process.
Distillation paths of SAD. We summarize the performance
of performing SAD between different blocks of ENet in Ta-
ble 5. We have a few observations. (1) SAD works well
in the middle and high-level layers. (2) Adding SAD in

SCNNinput

(a)

(b)

ENetENet-SAD

98.4 % 97.8 % 97.4 %

97.2 % 94.8 % 95.2 %

100 % 66.6 % 66.6 %

100 % 33.3 % 66.6 %
Figure 6. Performance of different algorithms on (a) TuSimple and
(b) CULane testing sets. The number below each image denotes
the accuracy. Ground-truth lanes are drawn on the input image.

ENet SCNNENet-SADinput

38.53 % 34.62 % 36.49 %

37.82 % 33.75 % 35.57 %
Figure 7. Performance of different algorithms on BDD100K test-
ing set. We visualize the probability maps to better showcase the
effect of adding self attention distillation. The brightness of the
pixel indicates the probability of this pixel belonging to lanes. The
number below each image denotes the pixel accuracy of lanes.
Ground-truth lanes are drawn on the input image.

low level layers will degrade the performance. The reason
why SAD does not work in low-level layers is that these
layers are originally designated to detect low-level details
of the scene. Making them to mimic the attention maps of
later layers will inevitably harm their ability of detecting
local features since later layers encode more global infor-
mation. Besides, we also find that mimicking the attention

Table 5. Performance of different variants of ENet-SAD on
TuSimple testing set. Pij denotes that the output of the i-th block
of ENet mimics the output of the j-th block.

Path Accuracy Path Accuracy Path Accuracy

P12 91.22% P23 94.72% P23, P24 95.38%
P13 91.36% P24 94.63% P23, P34 96.64%
P14 91.47% P34 95.29% P24, P34 96.52%

maps of the neighbouring layer successively brings more
performance gains compared with mimicking those of non-
adjacent layers (P23 + P34 outperforms P24 + P34). We
conjecture that attention maps of neighbouring layers are
closer from the semantic perspective compared with those
of non-neighbouring layers (see Fig. 1).
Backward distillation. We also tested another distillation
scheme that makes higher layers to mimic lower layers. It
decreases the performance of ENet from 93.02% to 91.26%
in TuSimple dataset. This is not surprising as low-level at-
tention maps contain more details and are more noisy. Hav-
ing higher-level layers to mimic lower layers will inevitably
interfere the global information captured in higher layers,
hampering the crucial clues for the lane detection task.
SAD v.s. Deep Supervision. We also compare SAD with
deep supervision [23]. Here, deep supervision denotes the
algorithm that uses the labels directly as supervision for
each layer in the network. More specifically, we use 1x1
convolution and bilinear upsampling to obtain the predic-
tion of intermediate layers and use the cross entropy loss to
train the intermediate outputs of the model. We empirically
find that adding deep supervision in blocks 2 to 4 obtains
the most significant performance gains. As can be seen in
Table 6, SAD brings more performance gains than deep su-
pervision in all three benchmarks. We attribute this to the
following reasons. Firstly, compared with labels that are
considered sparse and rigid, SAD provides softer attention
targets that capture more contextual information that indi-
cate the scene structure. Distilling information from atten-
tion maps of later layers helps previous layers to grasp the
contextual signals. Secondly, a SAD path offers a feedback
connection from deeper layers to shallower layers. The con-
nection helps facilitate reciprocal learning between succes-
sive layers through attention distillation.
When to add SAD. Recall that we assume a half-trained
model before we add SAD into the training. Here, we in-
vestigate the different timepoints to add SAD. As can be
seen in Fig. 8, although different timepoints of introducing
SAD achieve almost the same performance in the end, the
time to add SAD has an effect on the convergence speed
of the networks. We attribute the phenomenon to the qual-
ity of the target attention maps produced by later layers. In
earlier training stage, deeper layers have not been trained
well and therefore the distillation targets produced by these
layers are of low quality. Introducing SAD at these earlier

Table 6. Performance of SAD and deep supervision applied to dif-
ferent base models on TuSimple, CULane and BDD100K testing
sets.

Algorithm
TuSimple CULane BDD100K
Accuracy Total Accuracy IoU

ENet 93.02% 68.4 34.12% 14.64
ENet-Deep 94.69% 69.6 35.61% 15.38
ENet-SAD 96.64% 70.8 36.56% 16.02

R-18 92.69% 67.9 30.66% 11.07
R-18-Deep 94.14% 68.8 30.95% 12.23
R-18-SAD 96.02% 70.5 31.10% 13.29

R-34 92.84% 68.6 30.92% 12.24
R-34-Deep 94.52% 69.2 31.72% 13.59
R-34-SAD 96.24% 70.7 32.68% 14.56

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

10 k 20 k 30 k 40 k 50 k 60 k 70 k 80 k

Episode

10 K
20 K
30 K
40 K
50 K
baseline

F1
-m

ea
su

re

Figure 8. Performance of adding self attention distillation on the
ENet model at different training episodes on the CULane valida-
tion set. The number in the legend denotes the episode when self
attention distillation is added. ”Baseline” denotes the ENet model
without self attention distillation.

stages is not as fruitful. Conversely, adding SAD in later
training stage would benefit the representation learning of
the previous layers.

5. Discussion

We have proposed a simple yet effective attention dis-
tillation approach, i.e., SAD, to improve the representation
learning of CNN-based lane detection models. SAD is vali-
dated in various models (i.e., ENet, ResNet-18, ResNet-34,
and ResNet-101) and achieves consistent performance gains
in three popular benchmarks (i.e., TuSimple, CULane and
BDD100K), demonstrating the effectiveness of SAD. The
results show that SAD can generally improve the visual at-
tention of different layers in various networks. It would be
interesting to extend this idea to other tasks that demands
fine-grained attention to details, such as image saliency de-
tection and image matting.
Acknowledgement: This work is supported by Sense-
Time Group Limited, the General Research Fund spon-
sored by the Research Grants Council of the Hong Kong
SAR (CUHK 14241716), Singapore MOE AcRF Tier 1
(M4012082.020), NTU SUG, and NTU NAP.

References
[1] M. Bertozzi and A. Broggi. Gold: A parallel real-time stereo

vision system for generic obstacle and lane detection. IEEE
Transactions on Image Processing, 7(1):62–81, 1998. 1

[2] A. Borkar, M. Hayes, and M. T. Smith. A novel lane
detection system with efficient ground truth generation.
IEEE Transactions on Intelligent Transportation Systems,
13(1):365–374, 2012. 2

[3] L. Bottou. Large-scale machine learning with stochastic gra-
dient descent. In International Conference on Computational
Statistics, pages 177–186. Springer, 2010. 6

[4] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille. At-
tention to scale: scale-aware semantic image segmentation.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 3640–3649, 2016. 3

[5] Z. Chen and Z. Chen. Rbnet: A deep neural network for
unified road and road boundary detection. In International
Conference on Neural Information Processing, pages 677–
687. Springer, 2017. 1, 2

[6] H. Deusch, J. Wiest, S. Reuter, M. Szczot, M. Konrad, and
K. Dietmayer. A random finite set approach to multiple lane
detection. In IEEE Conference on Intelligent Transportation
Systems, pages 270–275. IEEE, 2012. 2

[7] T. Furlanello, Z. Lipton, M. Tschannen, L. Itti, and
A. Anandkumar. Born-again neural networks. In Interna-
tional Conference on Machine Learning, pages 1602–1611,
2018. 3

[8] M. Ghafoorian, C. Nugteren, N. Baka, O. Booij, and M. Hof-
mann. EL-GAN: embedding loss driven generative adversar-
ial networks for lane detection. In European Conference on
Computer Vision, pages 256–272. Springer, 2018. 1, 2, 3, 5,
6

[9] B. He, R. Ai, Y. Yan, and X. Lang. Accurate and robust lane
detection based on dual-view convolutional neutral network.
In IEEE Intelligent Vehicles Symposium, pages 1041–1046.
IEEE, 2016. 2

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 770–778, 2016. 2, 6,
7, 10

[11] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge
in a neural network. STAT, 1050:9, 2015. 3, 10

[12] Y. Hou. Agnostic lane detection. arXiv preprint
arXiv:1905.03704, 2019. 10

[13] Y. Hou, Z. Ma, C. Liu, and C. C. Loy. Learning lightweight
lane detection cnns by self attention distillation. arXiv
preprint arXiv:1908.00821, 2019. 10

[14] Y. Hou, Z. Ma, C. Liu, and C. C. Loy. Learning to steer by
mimicking features from heterogeneous auxiliary networks.
In Association for the Advancement of Artificial Intelligence,
2019. 3, 10

[15] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial
transformer networks. In Advances in Neural Information
Processing Systems, pages 2017–2025, 2015. 3

[16] S. Lee, J. Kim, J. S. Yoon, S. Shin, O. Bailo, N. Kim, T.-
H. Lee, H. S. Hong, S.-H. Han, and I. S. Kweon. Vpgnet:

Vanishing point guided network for lane and road marking
detection and recognition. In IEEE International Conference
on Computer Vision, pages 1965–1973. IEEE, 2017. 1, 2

[17] Y. Ma, X. Zhu, S. Zhang, R. Yang, W. Wang, and
D. Manocha. Trafficpredict: Trajectory prediction for hetero-
geneous traffic-agents. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, pages 6120–6127,
2019. 10

[18] D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans,
and L. Van Gool. Towards end-to-end lane detection: an
instance segmentation approach. In IEEE Intelligent Vehicles
Symposium, pages 286–291. IEEE, 2018. 2, 5, 6

[19] X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang. Spatial as deep:
Spatial CNN for traffic scene understanding. In Association
for the Advancement of Artificial Intelligence, 2018. 1, 2, 3,
4, 5, 6, 7, 10

[20] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. ENet:
A deep neural network architecture for real-time semantic
segmentation. arXiv preprint arXiv:1606.02147, 2016. 2, 4,
6, 7, 10

[21] TuSimple. http://benchmark.tusimple.ai/#/t/1. Accessed:
2018-09-08. 2, 5, 6, 10

[22] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang,
X. Wang, and X. Tang. Residual attention network for image
classification. In IEEE Conference on Computer Vision and
Pattern, 2017. 3

[23] S. Xie and Z. Tu. Holistically-nested edge detection. In IEEE
International Conference on Computer Vision, 2015. 8

[24] J. Yim, D. Joo, J. Bae, and J. Kim. A gift from knowl-
edge distillation: Fast optimization, network minimization
and transfer learning. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 4133–4141, 2017. 3

[25] F. Yu and V. Koltun. Multi-scale context aggregation by di-
lated convolutions. In International Conference on Learning
Representations, 2016. 5, 10

[26] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madha-
van, and T. Darrell. BDD100K: A diverse driving video
database with scalable annotation tooling. arXiv preprint
arXiv:1805.04687, 2018. 2, 5, 6, 10

[27] S. Zagoruyko and N. Komodakis. Paying more attention to
attention: improving the performance of convolutional neu-
ral networks via attention transfer. In International Confer-
ence on Learning Representations, 2017. 3, 4

[28] J. Zhang, Y. Xu, B. Ni, and Z. Duan. Geometric constrained
joint lane segmentation and lane boundary detection. In
European Conference on Computer Vision, pages 486–502,
2018. 3

A. Details of Architecture
Table 7 summarizes the architecture of the lane existence

prediction branch for ENet-SAD, ResNet-18-SAD and
ResNet-34-SAD. As to ResNet-18-SAD and ResNet-34-
SAD, we also use dilated convolution [25] to replace
the original convolution layers in the last two blocks for
ResNet-18 [10] and ResNet-34 [10].

Table 7. The architecture of the the lane existence prediction
branch. Assuming the input is 3 × 288 × 800. Note that the
output size is c × h × w before ”Flatten”, where c, h and w de-
note channel, height and width, respectively. The number in the
bracket besides the layer name is the parameter for that layer. For
instance, the four numbers besides dilated convolution denote ker-
nel size, stride, padding and dilated rate, respectively.

Layer Name Output Size

Dilated Convolution (3, 1, 4, 4) 32 × 36 × 100
Batch Normalization 32 × 36 × 100
Relu 32 × 36 × 100
Spatial Dropout (0.1) 32 × 36 × 100
Convolution (1, 1) 5 × 36 × 100
Spatial SoftMax 5 × 36 × 100
Average Pooling 5 × 18 × 50
Flatten 4500
Fully Connected 128
Relu 128
Fully Connected 4
Sigmoid 4

B. Lane Post-processing in CULane
For CULane, in the inference stage, we feed the image

into the ENet model. Then the multi-channel probability
maps and the lane existence vector are obtained. Follow-
ing [19, 12], the final output is obtained as follows: First,
we use a 9× 9 kernel to smooth the probability maps. Then,
for each lane whose existence probability is larger than 0.5,
we search the corresponding probability map every 20 rows
for the position with the highest probability value. Finally,
we use cubic splines to connect these positions to get the
final output. The process improves the final lane prediction
results as it removes noises in the probability maps. The
process is depicted in Figure 9. Here, we differentiate dif-
ferent lane instances with different colors.

C. More Qualitative Results in Lane Detection
Figures 10 and 11 depict the qualitative results of

different algorithms on TuSimple [21], CULane [19] and
BDD100K [26]. As can be seen in Fig. 10, ENet-SAD can
detect lanes more precisely than ENet [20] in TuSimple and
CUlane. Besides, the detection of ENet-SAD [13] is less af-
fected by the irrelevant objects on the road compared with
SCNN [19]. As can be seen in Fig. 11, the output probabil-

SCNNinput

(a)

(b)

ENetENet-SAD

96.0 % 89.6 % 95.8 %

99.6 % 95.4 % 93.8 %

100 % 66.6 % 66.6 %

75 % 50 % 50 %
Figure 10. Performance of different algorithms on (a) TuSimple
and (b) CULane testing sets. The number below each image de-
notes the accuracy. Ground-truth lanes are drawn on the input im-
age.

ENet SCNNENet-SADinput

39.15 % 31.73 % 35.42 %

35.49 % 32.08 % 32.36 %
Figure 11. Performance of different algorithms on BDD100K test-
ing set. We visualize the probability maps to better showcase the
effect of adding self attention distillation. The brightness of the
pixel indicates the probability of this pixel belonging to lanes. The
number below each image denotes the pixel accuracy of lanes.
Ground-truth lanes are drawn on the input image.

ity maps of ENet-SAD are more compact and contain less
noise compared with those of SCNN in poor light condi-
tions. Compared with conventional knowledge distillation
methods [11, 14], SAD is more memory-efficient since it
does not require a teacher model. Besides, ENet-SAD can
also be applied to much larger lane detection datasets, e.g.,
ApolloScape dataset [17].

References
[1] M. Bertozzi and A. Broggi. Gold: A parallel real-time stereo

vision system for generic obstacle and lane detection. IEEE
Transactions on Image Processing, 7(1):62–81, 1998. 1

[2] A. Borkar, M. Hayes, and M. T. Smith. A novel lane
detection system with efficient ground truth generation.
IEEE Transactions on Intelligent Transportation Systems,
13(1):365–374, 2012. 2

[3] L. Bottou. Large-scale machine learning with stochastic gra-
dient descent. In International Conference on Computational
Statistics, pages 177–186. Springer, 2010. 6

Figure 9. The process of obtaining lanes from probability maps on the CULane dataset. From left to right: original image, probability map,
extracted lane points and final lane prediction.

[4] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille. At-
tention to scale: scale-aware semantic image segmentation.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 3640–3649, 2016. 3

[5] Z. Chen and Z. Chen. Rbnet: A deep neural network for
unified road and road boundary detection. In International
Conference on Neural Information Processing, pages 677–
687. Springer, 2017. 1, 2

[6] H. Deusch, J. Wiest, S. Reuter, M. Szczot, M. Konrad, and
K. Dietmayer. A random finite set approach to multiple lane
detection. In IEEE Conference on Intelligent Transportation
Systems, pages 270–275. IEEE, 2012. 2

[7] T. Furlanello, Z. Lipton, M. Tschannen, L. Itti, and
A. Anandkumar. Born-again neural networks. In Interna-
tional Conference on Machine Learning, pages 1602–1611,
2018. 3

[8] M. Ghafoorian, C. Nugteren, N. Baka, O. Booij, and M. Hof-
mann. EL-GAN: embedding loss driven generative adversar-
ial networks for lane detection. In European Conference on
Computer Vision, pages 256–272. Springer, 2018. 1, 2, 3, 5,
6

[9] B. He, R. Ai, Y. Yan, and X. Lang. Accurate and robust lane
detection based on dual-view convolutional neutral network.
In IEEE Intelligent Vehicles Symposium, pages 1041–1046.
IEEE, 2016. 2

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 770–778, 2016. 2, 6,
7, 10

[11] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge
in a neural network. STAT, 1050:9, 2015. 3, 10

[12] Y. Hou. Agnostic lane detection. arXiv preprint
arXiv:1905.03704, 2019. 10

[13] Y. Hou, Z. Ma, C. Liu, and C. C. Loy. Learning lightweight
lane detection cnns by self attention distillation. arXiv
preprint arXiv:1908.00821, 2019. 10

[14] Y. Hou, Z. Ma, C. Liu, and C. C. Loy. Learning to steer by
mimicking features from heterogeneous auxiliary networks.
In Association for the Advancement of Artificial Intelligence,
2019. 3, 10

[15] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial
transformer networks. In Advances in Neural Information
Processing Systems, pages 2017–2025, 2015. 3

[16] S. Lee, J. Kim, J. S. Yoon, S. Shin, O. Bailo, N. Kim, T.-
H. Lee, H. S. Hong, S.-H. Han, and I. S. Kweon. Vpgnet:
Vanishing point guided network for lane and road marking
detection and recognition. In IEEE International Conference
on Computer Vision, pages 1965–1973. IEEE, 2017. 1, 2

[17] Y. Ma, X. Zhu, S. Zhang, R. Yang, W. Wang, and
D. Manocha. Trafficpredict: Trajectory prediction for hetero-
geneous traffic-agents. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, pages 6120–6127,
2019. 10

[18] D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans,
and L. Van Gool. Towards end-to-end lane detection: an
instance segmentation approach. In IEEE Intelligent Vehicles
Symposium, pages 286–291. IEEE, 2018. 2, 5, 6

[19] X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang. Spatial as deep:
Spatial CNN for traffic scene understanding. In Association
for the Advancement of Artificial Intelligence, 2018. 1, 2, 3,
4, 5, 6, 7, 10

[20] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. ENet:
A deep neural network architecture for real-time semantic
segmentation. arXiv preprint arXiv:1606.02147, 2016. 2, 4,
6, 7, 10

[21] TuSimple. http://benchmark.tusimple.ai/#/t/1. Accessed:
2018-09-08. 2, 5, 6, 10

[22] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang,
X. Wang, and X. Tang. Residual attention network for image
classification. In IEEE Conference on Computer Vision and
Pattern, 2017. 3

[23] S. Xie and Z. Tu. Holistically-nested edge detection. In IEEE
International Conference on Computer Vision, 2015. 8

[24] J. Yim, D. Joo, J. Bae, and J. Kim. A gift from knowl-
edge distillation: Fast optimization, network minimization
and transfer learning. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 4133–4141, 2017. 3

[25] F. Yu and V. Koltun. Multi-scale context aggregation by di-
lated convolutions. In International Conference on Learning
Representations, 2016. 5, 10

[26] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madha-
van, and T. Darrell. BDD100K: A diverse driving video
database with scalable annotation tooling. arXiv preprint
arXiv:1805.04687, 2018. 2, 5, 6, 10

[27] S. Zagoruyko and N. Komodakis. Paying more attention to
attention: improving the performance of convolutional neu-
ral networks via attention transfer. In International Confer-
ence on Learning Representations, 2017. 3, 4

[28] J. Zhang, Y. Xu, B. Ni, and Z. Duan. Geometric constrained
joint lane segmentation and lane boundary detection. In
European Conference on Computer Vision, pages 486–502,
2018. 3

